tumc:’

The analysis process
we discuss in this
section focuses on
reusable components.
However, the analysis
of complete COTS
systems (e.g., e-
commerce apps, soles
force automation
apps) con also be a
part of domain
onalysis.

What
' components
identified during
domain analysis
will be candidates
for reuse?

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 851

chically. As decomposition begins, the system is represented as a collection of ar-
chitectural frameworks, each composed of one or more design patterns (Chapter 10).
Further refinement identifies the components that are required to create each design
pattern. In an ideal context, all of these components would be acquired from a repos-
itory (component qualification, adaptation, and composition activities apply). When
specialized components are required, component engineering is applied.

The intent of domain engineering is to identify, construct, catalog, and disseminate a
set of software components that have applicability to existing and future software in
a particular application domain. The overall goal is to establish mechanisms that en-
able software engineers to share these components—to reuse them—during work on
new and existing systems. Domain engineering includes three major activities—
analysis, construction, and dissemination.

isdomf‘nhg cmnmonulﬂiesumongsysmmidmﬁlywmﬁmﬁm g
idniify progrom families that are positioned o take fullest edvontoge of those-c

It can be argued that “reuse will disappear, not by elimination, but by integration”
into the fabric of software engineering practice [TRA95]. As greater emphasis is
placed on reuse, some believe that domain engineering will become as important as
software engineering over the next decade.

30.3.1 The Domain Analysis Process
The overall approach to domain analysis is often characteriz
object-oriented software engineering. The steps in the proc
Define the domain to be investigated.

Categorize the items extracted from the domain.

Collect a representative sample of applications in the domain.

BowoN -

. Analyze each application in the sample and define analysis classes.

5. Develop an analysis model for the classes.

It is important to note that domain analysis is applicable to any software engineering
paradigm and may be applied for conventional as well as object-oriented development.

Although the steps just noted provide a useful model for domain analysis, they
provide no guidance for deciding which software components are candidates for
reuse. Hutchinson and Hindley [HUT88] suggest the following set of pragmatic ques-
tions as a guide for identifying reusable software components:

¢ Is component functionality required on future implementations?



852

domein onalysis con be
fomdat
www.ssl.ow.
odo/ste/
descrigtions/
dodabtml.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

e How common is the component’s function within the domain?
o Is there duplication of the component’s function within the domain?
e s the component hardware dependent? If so, does the hardware remain

unchanged between implementations or can the hardware specifics be
removed to another component?

e Is the design optimized enough for the next implementation?

e Can we parameterize a nonreusable component so that it becomes reusable?
e Is the component reusable in many implementations with only minor changes?
e Is reuse through maodification feasible?

¢ Can a nonreusable component be decomposed to yield reusable components?

e How valid is component decomposition for reuse?

For additional information on domain analysis, see [ATKO1], [HEIO1], and [PRI93].

30.3.2 Characterization Functions

It is sometimes difficult to determine whether a potentially reusable component is in
fact applicable in a particular situation. To make this determination, it is necessary
to define a set of domain characteristics that are shared by all software within a do-
main. A domain characteristic defines some generic attribute of all products that ex-
ist within the domain. For example, generic characteristics might include the
importance of safety/reliability, programming language, concurrency in processing,
and many others.

A set of domain characteristics for a reusable component can be represented as
{D,}, where each item, Dy, in the set represents a specific domain characteristic. The
value assigned to D, represents an ordinal scale that is an indication of the relevance
of the characteristic for component p. A typical scale [BAS94] might be

: Not relevant to whether reuse is appropriate.

1
2: Relevant only under unusual circumstances.
3

: Relevant—the component can be modified so that it can be used, despite
differences.

4: Clearly relevant, and if the new software does not have this characteristic,
reuse will be inefficient but may still be possible.

5: Clearly relevant, and if the new software does not have this characteristic,
reuse will be ineffective and reuse without the characteristic is not recom-
mended.

When new software, w, is to be built within the application domain, a set of domain
characteristics is derived for it. A comparison is then made between D,; and D,,; to de-
termine whether the existing component p can be effectively reused in application w.



What is o

structure
point, and
what are its
characteristics?

Y
N,
POINT
A structure point is
analogous to o design
pattem that con be
found repeatedly in
applications with a
specific domain.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 853

Even when software to be engineered clearly exists within an application domain,
the reusable components within that domain must be analyzed to determine their
applicability. In some cases (hopefully, a limited number), “reinventing the wheel”
may still be the most cost-effective choice.

30.3.3 Structural Modeling and Structure Points

When domain analysis is applied, the analyst looks for repeating patterns in the ap-
plications that reside within a domain. Structural modeling is a pattern-based do-
main engineering approach that works under the assumption that every application
domain has repeating patterns (of function, data, and behavior) that have reuse
potential.

Each application domain can be characterized by a structural model (e.g., air-
craft avionics systems differ greatly in specifics, but all modern software in this do-
main has the same structural model). Therefore, the structural model is an
architectural style (Chapter 10) that can and should be reused across applications
within the domain.

McMahon [MCM95] describes a structure point as “a distinct construct within a
structural model.” Structure points have three distinct characteristics:

1. A structure point is an abstraction that should have a limited number of in-
stances. In addition, the abstraction should recur throughout applications in
the domain. Otherwise, the cost to verify, document, and disseminate the
structure point cannot be justified.

2. The rules that govern the use of the structure point should be easily under-
stood. In addition, the interface to the structure point should be relatively
simple.

3. The structure point should implement information hiding by isolating all
complexity contained within the structure point itself. This reduces the per-
ceived complexity of the overall system.

As an example of structure points as architectural patterns for a system, consider
the domain of software for alarm systems. This domain might encompass systems
as simple as SafeHome (discussed in earlier chapters) or as complex as the alarm sys-
tem for an industrial process. In every case, however, a set of predictable structural
patterns are encountered: an interface that enables the user to interact with the sys-
tem, a bounds-setting mechanism that allows the user to establish bounds on the pa-
rameters to be measured, a sensor management mechanism that communicates with
all monitoring sensors, a response mechanism that reacts to the input provided by the
sensor management system, and a control mechanism that enables the user to con-
trol the manner in which monitoring is carried out. Each of these structure points is
integrated into a domain architecture.



854

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

It is possible to define generic structure points that transcend a number of differ-
ent application domains [STA94]:

e Application front end—the GUI including all menus, panels, and input and
command editing facilities.
o Database—the repository for all objects relevant to the application domain.

e Computational engine—the numerical and nonnumerical models that manipu-
late data.

o Reporting facility—the function that produces output of all kinds.
o Application editor—the mechanism for customizing the application to the

needs of specific users.

Structure points have been suggested as an alternative to lines of code and function
points for software cost estimation [MCM95]. A brief discussion of costing using
structure points is presented in Section 30.6.2.

Component-based development (CBD) is a CBSE activity that occurs in parallel with
domain engineering. Using analysis and architectural design methods discussed ear-
lier in this book, the software team refines an architectural style that is appropriate
for the analysis model created for the application to be built.?

Once the architecture has been established, it must be populated by components
that (1) are available from reuse libraries and/or (2) are engineered to meet custom
needs. Hence, the task flow for component-based development has two parallel
paths (Figure 30.1). When reusable components are available for potential integra-
tion into the architecture, they must be qualified and adapted. When new compo-
nents are required, they must be engineered. The resultant components are then
“composed” (integrated) into the architecture template and tested thoroughly.

30.4.1 Component Qualification, Adaptation, and Composition

As we have already seen, domain engineering provides the library of reusable com-
ponents that are required for component-based software engineering. Some of these
reusable components are developed in-house, others can be extracted from existing
applications, and still others may be acquired from third parties.

Unfortunately, the existence of reusable components does not guarantee that
these components can be integrated easily or effectively into the architecture cho-
sen for a new application. It is for this reason that a sequence of component-based
development activities is applied when a component is proposed for use.

2 It should be noted that the architectural style is often influenced by the generic structural model
created during domain engineering (see Figure 30.1).



Q What factors
® are

considered during
component
qualification?

Cova$

In addition to
assessing whether the
cost of adaptation for
reuse is justified, the
software team also
assesses whether
achieving required
functionality and
performance can be
done costeffectively.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 855

Component qualification. Component qualification ensures that a candidate
component will perform the function required, will properly “fit” into the architec-
tural style specified for the system, and will exhibit the quality characteristics (e.g.,
performance, reliability, usability) that are required for the application.

The interface description provides useful information about the operation and
use of a software component, but it does not provide all of the information re-
quired to determine if a proposed component can, in fact, be reused effectively in
a new application. Among the many factors considered during component quali-
fication are [BRO96}: application programming interface (API); development and in-
tegration tools required by the component; run-time requirements, including
resource usage (e.g., memory or storage), timing or speed, and network protocol;
service requirements, including operating system interfaces and support from other
components; security features, including access controls and authentication proto-
col; embedded design assumptions, including the use of specific numerical or non-
numerical algorithms; and exception handling.

Each of these factors is relatively easy to assess when reusable components that
have been developed in-house are proposed. However, it is much more difficult to
determine the internal workings of COTS or third-party components because the
only available information may be the interface specification itself.

Component adaptation. In an ideal setting, domain engineering creates a library
of components that can be easily integrated into an application architecture. The im-
plication of “easy integration” is that (1) consistent methods of resource manage-
ment have been implemented for all components in the library, (2) common activities
such as data management exist for all components, and (3) interfaces within the ar-
chitecture and with the external environment have been implemented in a consis-
tent manner.

In reality, even after a component has been qualified for use within an applica-
tion architecture, conflicts may occur in one or more of the areas just noted. To
avoid these conflicts, an adaptation technique called component wrapping
[BRO96] is often used. When a software team has full access to the internal design
and code for a component (often not the case when COTS components are used)
white-box wrapping is applied. Like its counterpart in software testing (Chapter
14), white-box wrapping examines the internal processing details of the compo-
nent and makes code-level modifications to remove any conflict. Gray-box wrap-
ping is applied when the component library provides a component extension
language or API that enables conflicts to be removed or masked. Black-box wrap-
ping requires the introduction of pre- and post-processing at the component in-
terface to remove or mask conflicts. The software team must determine whether
the effort required to adequately wrap a component is justified or whether a cus-
tom component (designed to eliminate the conflicts encountered) should be engi-
neered instead.



856

What

ingredients
are necessary
to achieve
component
composition?

=

on(ORBAoanbe -

obikedat
www.emg.org.

WebRef
The latest information
onMambe.

com/COM.:

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Component composition. The component composition task assembles quali-
fied, adapted, and engineered components to populate the architecture established
for an application. To accomplish this, an infrastructure must be established to bind
the components into an operational system. The infrastructure (usually a library of
specialized components) provides a model for the coordination of components and
specific services that enable components to coordinate with one another and per-
form common tasks.

Among the many mechanisms for creating an effective infrastructure is a set of
four “architectural ingredients” [ADL95] that should be present to achieve compo-
nent composition:

Data exchange model. Mechanisms that enable users and applications to in-
teract and transfer data (e.g., drag and drop, cut and paste) should be defined for
all reusable components. The data exchange mechanisms not only allow human-
to-software and component-to-component data transfer but also transfer among
system resources (e.g., dragging a file to a printer icon for output).

Automation. A variety of tools, macros, and scripts should be implemented to
facilitate interaction between reusable components.

Structured storage. Heterogeneous data (e.g., graphical data, voice/video,
text, and numerical data) contained in a “compound document” should be orga-
nized and accessed as a single data structure, rather than a collection of separate
files. “Structured data maintains a descriptive index of nesting structures that ap-
plications can freely navigate to locate, create, or edit individual data contents as
directed by the end user” [ADL95].

Underlying object model. The object model ensures that components devel-
oped in different programming languages that reside on different platforms can be
interoperable. That is, objects must be capable of communicating across a network.
To achieve this, the object model defines a standard for component interoperability.

Because the potential impact of reuse and CBSE on the software industry is enor-
mous, a number of major companies and industry consortia have proposed stan-
dards for component software:

OMG/CORBA. The Object Management Group has published a common object
request broker architecture (OMG/CORBA). An object request broker (ORB) provides a
variety of services that enable reusable components (objects) to communicate with
other components, regardless of their location within a system.

Microsoft COM. Microsoft has developed a component object mode] (COM) that
provides a specification for using components produced by various vendors within
a single application running under the Windows operating system. COM encom-
passes two elements: COM interfaces (implemented as COM objects) and a set of

. mechanisms for registering and passing messages between COM interfaces.



The latest information
on Javabeans can be
obtained of
java.sun.com/
products/
javabeans /docs/.

an obiject residing on a client to send a message to a object and its location are available when needed. The
method that is ‘encapsulated by an object residing on a interface repository accomplishes this.

server. In essence, the ORB intercepts the message and When a client application must invoke a method
handles all communication and coordination activities contained within an object elsewhere in the system, CORBA
required fo find the object fo which the message was uses dynamic invocation to (1) obtain pertinent information
addressed, invoke its method, pass appropriate data to the  about the desired method from the interface repository,
object, and transfer the resulting data back to the object (2) create a data structure with parameters to be passed to
that generated the message in the first place. the object, (3) create a request for the object, and (4) invoke

CORBA, COM, and JavaBeans implement an object the request. The request is then passed to the ORB core—an
request broker philosophy. In this sidebar CORBA will be implementation-specific part of the network operating

used to illustrate ORB middleware. system that manages requests—and the request is fulfilled.
The basic structure of a CORBA architecture is The request is passed through the core and is

illustrated in Figure 30.2. When CORBA is implemented in  processed by the server. At the server site, an object
a client/server system, objects on both the client and the adapter stores class and object information in a server-
server are defined using an inferface description language  resident inferface repository, accepts and manages
(IDL), a declarative language that allows a software incoming requests from the client, and performs a variety
engineer o define objects, attributes, methods, and the of other object management functions. At the server, IDL
messages required fo invoke them. To accommodate a stubs that are similar to those defined at the client machine
request for a server-resident method by a client-resident are used as the inferface to the actual object

(biect, client and server IDL stubs are created. The stubs implementation resident at the server site. /

Object Request Broker Architecture

Client/server systems are implemented using provide the gateway through which requests for objects
software components {objects) that must be across the ¢/s system are accommodated.

capable of interacting with one another within a single Because requests for objects across the network occur
machine (either client or server) or across the network. An  at ruh time, a mechanism for storing the object description
object request broker (ORB) is “middleware” that enables ~ must be established so that pertinent information about the

CHAPTER 30 COMPONENT-BASED DEVELOPMENT 857

Sun JavaBeans Components. The JavaBeans component system is a portable,
platform independent CBSE infrastructure developed using the Java programming
language. The JavaBeans component system encompasses a set of tools, called the
Bean Development Kit (BDK), that allows developers to (1) analyze how existing
Beans (components) work, (2) customize their behavior and appearance, (3) estab-
lish mechanisms for coordination and communication, (4) develop custom Beans
for use in a specific application, and (5) test and evaluate Bean behavior.

Which of these standards will dominate the industry? There is no easy answer at
this time. Although many developers have adopted one of the standards, it is likely
that large software organizations may choose to use all three standards, depending
on the application categories and platforms that are chosen.

30.4.2 Component Engineering

As we noted earlier in this chapter, the CBSE process encourages the use of existing
software components. However, there are times when components must be engi-
neered. That is, new software components must be developed and integrated with



858

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

The basic
CORBA archi-
tecture

existing COTS and in-house components. Because these new components become
members of the in-house library of reusable components, they should be engineered
for reuse.

Nothing is magical about creating software components that can be reused.
Design concepts such as abstraction, hiding, functional independence, refine-
ment, and structured programming, along with object-oriented methods, testing,
SQA, and correctness verification methods, all contribute to the creation of soft-
ware components that are reusable.? In this section we will not revisit these
topics. Rather, we consider the reuse-specific issues that are complementary to
solid software engineering practices.

30.4.3 Analysis and Design for Reuse

The analysis model is analyzed to determine those elements of the model that point
to existing reusable components. The problem is extracting information from the re-
quirements model in a form that can lead to “specification matching.”

If specification matching yields components that fit the needs of the current ap-
plication, the designer can extract these components from a reuse library (reposi-
tory) and use them in the design of new systems. If design components cannot be
found, the software engineer must apply conventional or OO design methods to cre-
ate them. It is at this point—when the designer begins to create a new component—
that design for reuse (DFR) should be considered.

As we have already noted, DFR requires the software engineer to apply solid soft-
ware design concepts and principles (Chapter 9). But the characteristics of the ap-

3 To learn more about these concepts, see Parts 2 and 5 of this book.



CHAPTER 30 COMPONENT-BASED DEVELOPMENT 859

e plication domain must also be considered. Binder [BIN93] suggests a number of key
MW“O issues’ that form a basis for design for reuse:

DFR con be quite Standard data. The application domain should be investigated and standard
difficult when compo- .

nents must be infer- global data structures (e.g., file structures or a complete database) should be iden-
faced or integrated tified. All design components can then be characterized to make use of these stan-
with legacy systems or - dard data structures.

with multiple systems

whose architecture and Standard interface protocols. Three levels of interface protocol should be es-
interfacing protocols tablished: the nature of intramodular interfaces, the design of external technical
are inconsistent. (nonhuman) interfaces, and the human/machine interface.

Program templates. The structure model (Section 30.3.3) can serve as a tem-
plate for the architectural design of a new program.

Once standard data, interfaces, and program templates have been established, the
designer has a framework in which to create the design. New components that con-
form to this framework have a higher probability for subsequent reuse.

Consider a university library. Tens of thousands of books, periodicals, and other in-
formation resources are available for use. But to access these resources, a catego-
rization scheme must be developed. To navigate this large volume of information,
librarians have defined a classification scheme that includes a Library of Congress
classification code, keywords, author names, and other index entries. All enable the
user to find the needed resource quickly and easily.

Now, consider a large component repository. Tens of thousands of reusable
software components reside in it. But how does a software engineer find the one
she needs? To answer this question, another question arises: How do we describe
software components in unambiguous, classifiable terms? These are difficult ques-
tions, and no definitive answer has yet been developed. In this section we explore
current directions that will enable future software engineers to navigate reuse
libraries.

30.5.1 Describing Reusable Components

A reusable software component can be described in many ways, but an ideal de-
scription encompasses what Tracz [TRA90] has called the 3C model—concept, con-
tent, and context.

The concept of a software component is “a description of what the component
does” [WHI95]. The interface to the component is fully described and the semantics—
represented within the context of pre- and postconditions—are identified. The con-
cept should communicate the intent of the component.

4 Ingeneral, DFR preparations should be undertaken as part of domain engineering (Section 30.3).



860

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

The content of a component describes how the concept is realized. In essence, the
content is information that is hidden from casual users and need be known only to
those who intend to modify or test the component.

The context places a reusable software component within its domain of applica-
bility. That is, by specifying conceptual, operational, and implementation features,
the context enables a software engineer to find the appropriate component to meet
application requirements.

To be of use in a pragmatic setting, concept, content, and context must be trans-
lated into a concrete specification scheme. Dozens of papers and articles have been
written about classification schemes for reusable software components (e.g.,
[LUCO1] and [WHI95] contain extensive bibliographies). The methods proposed can
be categorized into three major areas: library and information science methods, ar-
tificial intelligence methods, and hypertext systems. The vast majority of work done
to date suggests the use of library science methods for component classification.

Figure 30.3 presents a taxonomy of library science indexing methods. Controlled
indexing vocabularies limit the terms or syntax that can be used to classify an object
(component). Uncontrolled indexing vocabularies place no restrictions on the nature
of the description. The majority of classification schemes for software components
fall into three categories:

Enumerated classification. Components are described by a hierarchical
structure in which classes and varying levels of subclasses of software components
are defined. The hierarchical structure of an enumerated classification scheme
makes it easy to understand and to use. However, before a hierarchy can be built,
domain engineering must be conducted so that sufficient knowledge of the proper
entries in the hierarchy is available.

A taxonomy of
indexing
methods
[FRA94]

Indexing
vocabularies

T

Controlled Uncontrolled
Classed Keyword Terms extracted ~ Terms not extracted
from fext from text
Enumerated Dbscriptors E With syntax
Faceted Subject Without syntax

‘ headings
Thesaurus



CHAPTER 30 COMPONENT-BASED DEVELOPMENT 861

Faceted classification. A domain area is analyzed and a set of basic descrip-
tive features are identified. These features, called facets, are then ranked by impor-
tance and connected to a component. A facet can describe the function that the
component performs, the data that are manipulated, the context in which they are
applied, or any other feature. The set of facets that describe a component is called
the facet descriptor. Generally, the facet description is limited to no more than seven
or eight facets.

Attribute-value classification. A set of attributes is defined for all compo-
nents in a domain area. Values are then assigned to these attributes in much the
same way as faceted classification. In fact, attribute value classification is similar
to faceted classification with the following exceptions: (1) no limit is placed on the
number of attributes that can be used, (2) attributes are not assigned priorities, and
(3) a thesaurus function is not used.

Based on an empirical study of each of these classification techniques, Frakes and
Pole [FRA94] indicate that there is no clear “best” technique and that “no method did
more than moderately well in search effectiveness. . . .” It would appear that further
work remains to be done in the development of effective classification schemes for
reuse libraries.

30.5.2 The Reuse Environment

Software component reuse must be supported by an environment that encémpasses
the following elements:

e A component database capable of storing software components and the clas-
sification information necessary to retrieve them.

e A library management system that provides access to the database.

¢ A software component retrieval system (e.g., an object request broker) that
enables a client application to retrieve components and services from the
library server.

e CBSE tools that support the integration of reused components into a new
design or implementation.

Each of these functions interact with or is embodied within the confines of a reuse
library.

The reuse library is one element of a larger software repository (Chapter 27) and
provides facilities for the storage of software components and a wide variety of
reusable work products (e.g., specifications, designs, patterns, frameworks, code
fragments, test cases, user guides). The library encompasses a database and the tools
that are necessary to query the database and retrieve components from it. A compo-
nent classification scheme (Section 30.5.1) serves as the basis for library queries.

Queries are often characterized using the context element of the 3C model
described earlier in this section. if an initial query results in a voluminous list of



862

Acomprehensive
collection of resources
on (BSE can be found
ot ’
btp:// www.,
chd-hq.com/.

Component-Based Development

E./
Q Objective: To aid in modeling, design, Component Manager, developed by Flashline
review, and integration of software components {www.flashline.com), “is an application that enables,
as part of a larger system. promotes, and measures software component reuse.”

Mechanics: Tools mechanics vary. In general, CBD tools
assist in one or more of the following capabilities:
specification and modeling of the software architecture;
browsing and selection of available software components;
integration of components.

Representative Tools®

ComponentSource (www.componentsource.com) provides a using UML for the OMG model driven architecture—an
wide array of COTS software components (and fools)

k supported within many different component standards. /

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

candidate components, the query is refined to narrow the list. Concept and content
information are then extracted (after candidate components are found) to assist the
developer in selecting the proper component.

A detailed discussion of the structure of reuse libraries and the tools that manage
them is best left to sources dedicated to the subject. The interested reader should see

[FIS00] and [LIN95] for additional information.
SOFTWARE TooLs

Select Component Factory, developed by Select Business
Solutions (www.selectbs.com/products), “is an
integrated set of products for software design, design
review, service/component management, requirements
management, and code generation.”

Software Through Pictures-ACD, distributed by Aonix

(www.aonix.com), enables comprehensive modeling

open, vendor-neutral approach for CBSE.

A variety of arfices
providing guidefines for
(BD ond (OTS-bosed
systems con be found
of

www.sel.anu.edu,

Component-based software engineering has an intuitive appeal. In theory, it should
provide a software organization with advantages in quality and timeliness. And these
should translate into cost savings. But are there hard data that support our intuition?

To answer this question we must first understand what actually can be reused in
a software engineering context and then what the costs associated with reuse really
are. As a consequence, it is possible to develop a cost/benefit analysis for compo-
nent reuse.

30.6.1 Impact on Quality, Productivity, and Cost

Considerable evidence from industry case studies (e.g., [ALLO2], [HEN95], [MCM95])
indicates substantial business benefits can be derived from aggressive software
reuse. Product quality, development productivity, and overall cost are all improved.

Quality. In an ideal setting, a software component that is developed for reuse
would be verified to be correct (see Chapter 29) and would contain no defects. In

5 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.



Gpwcss

The cost to develop a
reusable component is
often greater that the
cost fo develop a
component that is
specific to one applic-
tion. Be sure that there
will be a need for the
reusable component in
the future. That's
where the payoff is
realized.

CHAPTER 30 COMPONENT-BASED DEVELOPMENT . 863
reality, formal verification is not carried out routinely, and defects can and do occur.
However, with each reuse, defects are found and eliminated, and a component’s
quality improves as a result. Over time, the component becomes virtually defect free.

In a study conducted at Hewlett Packard, Lim [LIM94] reports that the defect rate for
reused code is 0.9 defects per KLOC, while the rate for newly developed software is 4.1
defects per KLOC. For an application that was composed of 68 percent reused code, the
defect rate was 2.0 defects per KLOC—a 51 percent improvement from the expected
rate, had the application been developed without reuse. Henry and Faller [HEN95] re-
port a 35 percent improvement in quality. Although anecdotal reports span a reason-
ably wide spectrum of quality improvement percentages, it is fair to state that reuse
provides a nontrivial benefit in terms of the quality and reliability for delivered software.

Productivity. When reusable components are applied throughout the software
process, less time is spent creating the plans, models, documents, code, and data
that are required to create a deliverable system. It follows that the same leve] of func-
tionality is delivered to the customer with less input effort. Hence, productivity is im-
proved. Although percentage productivity improvement reports are notoriously
difficult to interpret,® it appears that 30 to 50 percent reuse can result in productivity
improvements in the 25-40 percent range.

Cost. The net cost savings for reuse are estimated by projecting the cost of the
project if it were developed from scratch, Cs, and then subtracting the sum of the
costs associated with reuse, C,, and the actual cost of the software as delivered, C;.

Cs can be determined by applying one or more of the estimation techniques dis-
cussed in Chapter 23. The costs associated with reuse, C,, include [CHR95]: domain
analysis and modeling, domain architecture development, increased documentation
to facilitate reuse, support and enhancement of reuse components, royalties and li-
censes for externally acquired components, creation or acquisition and operation of a
reuse repository, and training of personnel in design and construction for reuse. Al-
though costs associated with domain analysis (Section 30.3) and the operation of a
reuse repository can be substantial, many of the other costs noted here address issues
that are part of good software engineering practice, whether or not reuse is a priority.

30.6.2 Cost Analysis Using Structure Points

In Section 30.3.3, we defined a structure point as an architectural pattern that recurs
throughout a particular application domain. A software designer (or system engineer)
can develop an architecture for a new application, system, or product by defining a do-
main architecture and then populating it with structure points. These structure points
are either individual reusable components or packages of reusable components.

6 Many extenuating circumstances (e.g., application domain, problem complexity, team structure
and size, project duration, technology applied) can have a profound impact on the productivity of
the project team.



864 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Even though structure points are reusable, their qualification, adaptation, integra-
tion, and maintenance costs are nontrivial. Before proceeding with reuse, the project
manager should understand the costs associated with the use of structure points.

Since all structure points (and reusable components in general) have a past his-
tory, cost data can be collected for each. In an ideal setting, the qualification, adap-
tation, integration, and maintenance costs associated with each component in a
reuse library is maintained for each instance of usage. These data can then be ana-
lyzed to develop projected casts for the next instance of reuse.

As an example, consider a new application, X, that requires 60 percent new code
and the reuse of three structure points, SP,, SP,, and SP. Each of these reusable com-
ponents has been used in a number of other applications, and average costs for qual-
ification, adaptation, integration, and maintenance are available.

To estimate the effort required to deliver X, the following must be determined:

overall effort = E.e,, + Equal + Eadapt + Eint
where

Enew = effort required to engineer and construct new software components
(determined using techniques described in Chapter 23)

Equa = effort required to qualify SP,, SP,, and SP,

Eaqapt = €effort required to adapt SP,, SP,, and SP;

E;, = effort required to integrate SP;, SP,, and SP;

The effort required to qualify, adapt, and integrate SP,, SP,, and SP; is determined by
taking the average of historical data collected for qualification, adaptation, and inte-
gration of the reusable components in other applications.

; e Y
Component-based software engineering offers inherent benefits in software qual-
ity, developer productivity, and overall system cost. And yet, many roadblocks re-
main to be overcome before the CBSE process model is widely used throughout
the industry.

In addition to software components, a variety of reusable artifacts can be acquired
by a software engineer. These include technical representations of the software (e.g.,
specifications, architectural models, designs), documents, patterns, frameworks,
test data, and even process-related tasks (e.g., inspection techniques).

The CBSE process encompasses two concurrent subprocesses—domain engi-
neering and component-based development. The intent of domain engineering is to
identify, construct, catalog, and disseminate a set of software components in a par-
ticular application domain. Component-based development then qualifies, adapts,
and integrates these components for use in a new system. In addition, component-




CHAPTER 30 COMPONENT-BASED DEVELOPMENT 865

based development engineers new components that are based on the custom re-
quirements of a new system.

Analysis and design techniques for reusable components draw on the same
principles and concepts that are part of good software engineering practice.
Reusable components should be designed within an environment that establishes
standard data structures, interface protocols, and program architectures for each
application domain.

Component-based software engineering uses a data exchange model, tools,
structured storage, and an underlying object model to construct applications. The
object model generally conforms to one or more component standards (e.g.,
OMG/CORBA) that define the manner in which an application can access reusable
objects. Classification schemes enable a developer to find and retrieve reusable
components and conform to a model that identifies concept, content, and context.
Enumerated classification, faceted classification, and attribute-value classification
are representative of many component classification schemes.

The economics of software reuse are addressed by a single question: Is it cost ef-
fective to build less and reuse more? In general, the answer is yes, but a software
project planner must consider the nontrivial costs associated with the qualification,
adaptation, and integration of reusable components.

[ADL95] Adler, R.M., “Emerging Standards for Component Software, Computer, vol. 28, no. 3,
March 1995, pp. 68-77.

[ALLO2] Allen, P, “CBD Survey: The State of the Practice,” The Cutter Edge, March, 2002, avail-
able at http://www.cutter.com/research/2002/edge020305.html.

[ATKOI] Atkinson, C., et al; Component-Based Product Line Enginecring with UML, Addison-
Wesley, 2001.

[BAS94] Basili, V. R., L. C. Briand, and W. M. Thomas, “Domain Analysis for the Reuse of Soft-
ware Development Experiences,” Proc. of the 19th Annual Software Engineering Workshop,
NASA/GSFC, Greenbelt, MD, December 1994.

[BIN93] Binder, R., “Design for Reuse Is for Real,” American Programmer, vol. 6, no. 8, August
1993, pp. 30-37.

[BRO96] Brown, A. W., and K. C. Wallnau, “Engineering of Component-Based Systems,”
Component-Based Software Engineering, IEEE Computer Society Press, 1996, pp. 7-15.
[CHR95] Christensen, S. R., “Software Reuse Initiatives at Lockheed,” CrossTalk, vol. 8, no. 5,

May 1995, pp. 26-31.

[CLE95] Clements, P. C., “From Subroutines to Subsystems: Component-Based Software Devel-
opment,” American Programmer, vol. 8, No. 11, November 1995.

[DOGO03] Dogru, A., and M. Tanik, “A Process Model for Component-Oriented Software Engi-
neering, IEEE Software, vol. 20, no. 2, March/April 2003, pp. 34-41.

[FISO0] Fischer, B., “Specification-Based Browsing of Software Component Libraries,” J. Auto-
mated Software Engineering, vol. 7, no. 2, 2000, pp. 179-200, available at http://ase.
arc.nasa.gov/people/fischer/papers/ase-00.html. '

[FRA94] Frakes, W. B,, and T. P. Pole, “An Empirical Study of Representation Methods for
Reusable Software Components,” IEEE Trans. Software Engineering, vol. SE-20, no. 8, August
1994, pp. 617-630.



866

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

[HEIO1] Heineman, G., and W. Councill (eds.), Component-Based Software Engineering, Addison-
Wesley, 2001.

[HEN95] Henry, E., and B. Faller, “Large Scale Industrial Reuse to Reduce Cost and Cycle Time,”
IEEE Software, September 1995, pp. 47-53.

[HUT88] Hutchinson, J. W., and P. G. Hindley, “A Preliminary Study of Large Scale Software
Reuse,” Software Engineering Journal, vol. 3, no. 5, 1988, pp. 208-212.

[LIA93] Liao, H., and Wang, F., “Software Reuse Based on a Large Object-Oriented Library,”
ACM Software Engineering Notes, vol. 18, no. 1, January 1993, pp. 74-80.

[LIM94] Lim, W. C., “Effects of Reuse on Quality, Productivity, and Economics,” IEEE Software,
September 1994, pp. 23-30.

[LIN95] Linthicum, D. S., “Component Development (a Special Feature),” Application Develop-
ment Trends, June 1995, pp. 57-78.

[LUCO1] deLucena, Jr., V., “Facet-Based Classification Scheme for Industrial Software Compo-
nents,” 2001, can be downloaded from http://research.microsoft.com/ users/cszypers/
events/WCOP2Q01/Lucena.pdf.

[MCM95] McMahon, PE., “Pattern-Based Architecture: Bridging Software Reuse and Cost Man-
agement,” Crosstalk, vol. 8, no. 3, March 1995, pp. 10-16.

[ORF96] Orfali, R., D. Harkey, and J. Edwards, The Essential Distributed Objects Survival Guide,
Wiley, 1996.

[PRI93] Prieto-Diaz, R., “Issues and Experiences in Software Reuse,” American Programmer, vol.
6, no. 8, August 1993, pp. 10-18.

[POL94] Pollak, W., and M. Rissman, “Structural Models and Patterned Architectures,” Computer,
vol. 27, no. 8, August 1994, pp. 67-68.

[STA94] Staringer, W., “Constructing Applications from Reusable Components,” IEEE Software,
September 1994, pp. 61-68.

[TRA90] Tracz, W., “Where Does Reuse Start?” Proc. Realities of Reuse Workshop, Syracuse Uni-
versity CASE Center, January 1990.

[TRA95] Tracz, W., “Third International Conference on Software Reuse—Summary,” ACM Soft-
ware Engineering Notes, vol. 20, no. 2, April 1995, pp. 21-22.

[WHI95] Whittle, B., “Models and Languages for Component Description and Reuse,” ACM Soft-
ware Engineering Notes, vol. 20, no. 2, April 1995, pp. 76-89.

[YOU98] Yourdon, E. {ed.), “Distributed Objects,” Cutter IT Journal, vol. 11, no. 12, December 1998.

30.1. Develop a set of domain characteristics that are relevant for word-processing/desktop-
publishing software.

30.2. How are characterization functions for application domains and component classifica-
tion schemes the same? How are they different?

30.3. Do a bit of research on domain engineering and flesh out the process model outlined in
Figure 30.1. Identify the tasks that are required for domain analysis and software architecture
development.

30.4. Although software components are the most obvious reusable “artifact,” many other
work products produced as part of software engineering can be reused. Consider project plans
and cost estimates. How can these be reused, and what is the benefit of doing so?

30.5. Develop a set of domain characteristics for information systems that are relevant to a uni-
versity's student data processing.

30.6. One of the key roadblocks to reuse is getting software developers to consider reusing ex-
isting components, rather than reinventing new ones (after all, building things is fun!). Suggest
three or four different ways that a software organization can provide incentives for software en-
gineers to reuse. What technologies should be in place to support the reuse effort?



CHAPTER 30 COMPONENT-BASED DEVELOPMENT 867

30.7. Develop a faceted classification scheme for an application domain assigned by your in-
structor or one with which you are familiar.

30.8. Acquire information on the most recent CORBA or COM or JavaBeans standard and pre-
pare a three- to five-page paper that discusses its major highlights. Get information on an ob-
ject request broker tool and illustrate how the tool achieves the standard.

30.9. What is a structure point?

30.10. Develop an enumerated classification for an application domain assigned by your in-
structor or one with which you are familiar.

30.11. Research the literature to acquire recent quality and productivity data that support the
use of CBSE. Present the data to your class.

30.12. Develop a simple structural model for an application domain assigned by your instruc-
tor or one with which you are familiar.

FURTHER READINGS AND INFORMATION SOURCES

Many books on component-based development and component reuse have been published in re-
cent years. Heineman and Councill [HEIO1], Brown (Large Scale Component-Based Development,
Prentice-Hall, 2000), Allen (Realizing e-Business with Components, Addison-Wesley, 2000), Herzum
and Sims (Business Component Factory, Wiley, 1999), and Allen, Frost, and Yourdon (Component-
Based Development for Enterprise Systems: Applying the Select Perspective, Cambridge University
Press, 1998) cover all important aspects of the CBSE process. Apperly and his colleagues (Service-
and Component-Based Development, Addison-Wesley, 2003), Atkinson [ATKO1], and Cheesman
and Daniels (UML Components, Addison-Wesley, 2000) discuss CBSE with a UML emphasis.

Leach (Software Reuse: Methods, Models, and Costs, McGraw-Hill, 1997) provides a detailed
analysis of cost issues associated with CBSE and reuse. Poulin (Measuring Software Reuse: Prin-
ciples, Practices, and Economic Models, Addison-Wesley, 1996) suggests a number of quantita-
tive methods for assessing the benefits of software reuse.

Dozens of books describing the industry’s component-based standards have been published
in recent years. These address the inner workings of the standards themselves but also consider
many important CBSE topics. A sampling for the three standards discussed in this chapter follows:

CORBA

Bolton, F., Pure CORBA, Sams Publishing, 2001.

Doss, G. M., CORBA Networking With Java, Wordware Publishing, 1999.

Hoque, R., CORBA for Real Programmers, Academic Press/Morgan Kaufmann, 1999.
Siegel, J., CORBA Fundamentals and Programming, Wiley, 1999.

Slama, D., J. Garbis, and P. Russell, Enterprise CORBA, Prentice-Hall, 1999.

CcCoM

Box, D., K. Brown, T. Ewald, and C. Sells, Effective COM: 50 Ways to Improve Your COM- and
MTS-Based Applications, Addison-Wesley, 1999.

Gordon, A., The COM and COM+ Programming Primer, Prentice-Hall, 2000.
Kirtland, M., Designing Component-Based Applications, Microsoft Press, 1999.
Tapadiya, P., COM+ Programming, Prentice-Hall, 2000.
Many organizations apply a combination of component standards. Books by Geraghty and his

colleagues (COM-CORBA Interoperability, Prentice-Hall, 1999), Pritchard (COM and CORBA Side
by Side: Architectures, Strategies, and Implementations, Addison-Wesley, 1999), and Rosen and his



868 PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

colleagues (Integrating CORBA and COM Applications, Wiley, 1999) consider the issues associ-
ated with the use of both CORBA and COM as the basis for component-based development.

JavaBeans

Asbury, S., and S. R. Weiner, Developing Java Enterprise Applications, Wiley, 1999.

Anderson, G., and P. Anderson, Enterprise Javabeans Component Architecture, Prentice-Hall,
2002.

Monson-Haefel, R., Enterprise Javabeans, third edition, O'Reilly & Associates, 2001.
Roman, E., et al., Mastering Enterprise Javabeans, 2nd ed., Wiley, 2001.

A wide variety of information sources on component-based software engineering is avail-

able on the Internet. An up-to-date list of World Wide Web references can be found at the SEPA
Web site:

http://www.mhhe.com/pressman.



REENGINEERING

Ky , n a seminal article written for the Harvard Business Review, Michael Hammer

CONCEPTS [HAM90] laid the foundation for a revolution in management thinking about

BPR process model business processes and computing:

O/ orchitectures - It is time to stop paving the cow paths. Instead of embedding outdated processes in

data strectures silicon and software, we should obliterate them and start over. We should “reengi-

economics neer” our businesses: use the power of modern information technology to radically re-

forward engineering design our business processes in order to achieve dramatic improvements in their

inventory analysis performance.

mointenance Every company operates according to a great many unarticulated rules . . . Reengi-

00 orchitectures neering strives to break away from the old rules about how we organize and conduct
- our business.

process Like all revolutions, Hammer's call to arms resulted in both positive and nega-

restructuring tive changes. During the 1990s, some companies made a legitimate effort to

reverse engineering reengineer, and the results led to improved competitiveness. Others relied solely

on downsizing and outsourcing (instead of reengineering) to improve their bottom
line. Organizations with little potential for future growth often resulted [DEM95].

During this first decade of the twenty-first century, the hype associated with
reengineering has waned, but the process itself continues in companies large and
small. The nexus between business reengineering and software engineering lies
in a system view.

nizational level,
-business special-

, "
on busmesr:anc-

on every com-

with added functmahfy %::smess and the

and reliability, and mpmM mamidmdbtﬁt)?
That's what we call reengineering. :

869



870

N
o
POINT
BPR often results in
new software
functionality, whereas
software reengineering
works to replace
existing software
functionality with
better, more
mainfainable software.

PART FIVE

ADVANCED TOPICS IN SOFTWARE ENGINEERING

Software is often the realization of the business rules that Hammer discusses. As
these rules change, software must also change. Today, major companies have tens
of thousands of computer programs that support old business rules. As managers
work to modify the rules to achieve greater effectiveness and competitiveness, soft-
ware must keep pace. In some cases, this means the creation of major new
computer-based systems.! But in many others, it means the modification or rebuild-
ing of existing applications.

In this chapter, we examine reengineering in a top-down manner, beginning
with a brief overview of business process reengineering and proceeding to a more
detailed discussion of the technical activities that occur when software is reen-
gineered.

Business process reengineering (BPR) extends far beyond the scope of information
technologies and software engineering. Among the many definitions (most some-
what abstract) that have been suggested for BPR is one published in Fortune maga-
zine [STE93]: “the search for, and the implementation of, radical change in business
process to achieve breakthrough results.” But how is the search conducted, and how
is the implementation achieved? More important, how can we ensure that the “rad-
ical change” suggested will in fact lead to “breakthrough results” instead of organi-
zational chaos?

 foce fomorrow with the thought of using the methods of yesterday is fo envision ife cta sendstil”

1 The explosion of Web-based applications and systems discussed in Part 3 of this book is indicative
of this trend.



ﬁpwc:‘

As g software

engineer, your work
occurs at the bottom of
this hierarchy. Be sure,
however, that
someone has given
serious thought fo the
levels above. If this
hasn't been done, your
work s af risk.

Extensive information
on BPR can be found of
www.brint.com/
BPR.him.

CHAPTER 31 REENGINEERING 871

31.1.1 Business Processes

A business process is “a set of logically related tasks performed to achieve a defined
business outcome” [DAV90]. Within the business process, people, equipment, mate-
rial resources, and business procedures are combined to produce a specified result.
Examples of business processes include designing a new product, purchasing ser-
vices and supplies, hiring a new employee, and paying suppliers. Each demands a
set of tasks, and each draws on diverse resources within the business.

Every business process has a defined customer—a person or group that receives
the outcome (e.g., an idea, a report, a design, a product). In addition, business
processes cross organizational boundaries. They require that different organiza-
tional groups participate in the “logically related tasks” that define the process.

In Chapter 6, we noted that every system is actually a hierarchy of subsystems. A
business is no exception. Each business system (also called a business function) is
composed of one or more business processes, and each business processeis defined
by a set of subprocesses.

BPR can be applied at any level of the hierarchy, but as the scope of BPR broad-
ens (i.e., as we move upward in the hierarchy), the risks associated with it grow dra-
matically. For this reason, most BPR efforts focus on individual processes or
subprocesses.

i kéﬁémmsﬁmw«nﬁmﬂiﬂumm,wmp«iﬁdﬁ

31.1.2 A BPR Model

Like most engineering activities, business process reengineering is iterative. Business
goals and the processes that achieve them must be adapted to a changing business
environment. For this reason, there is no start and end to BPR—it is an evolutionary
process. A model for business process reengineering is depicted in Figure 31.1. The
model defines six activities:

Business definition. Business goals are identified within the context of four
key drivers: cost reduction, time reduction, quality improvement, and personnel
development and empowerment. Goals may be defined at the business level or for
a specific component of the business.

Process identification. Processes that are critical to achieving the goals de-
fined in the business definition are identified. They may then be ranked by impor-
tance, by need for change, or in any other way that is appropriate for the
reengineering activity.

Process evaluation. The existing process is thoroughly analyzed and mea-
sured. Process tasks are identified; the costs and time consumed by process tasks
are noted; and quality/performance problems are isolated.



874

2N
o,
POINT
Software maintenance
encompasses four
activities: eror
correction, adaptation,
enhancement, and
reengineering.

An excelent source

of information on
software reenginesring
can be found at
wWWW.

reengineering.net.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

maintenance is required and why so much effort is expended. Osborne and Chikof-
sky [OSB90] provide a partial answer:

‘Much of the software we depend on today is on average 10 to 15 years old. Even when
these programs were created using the best design and coding techniques known at the
time [and most were not], they were created when program size and storage space were
principle concerns. They were then migrated to new platforms, adjusted for changes in
machine and operating system technology and enhanced to meet new user needs—all
without enough regard to overall architecture. The result is the poorly designed struc-
tures, poor coding, poor logic, and poor documentation of the software systems we are
now called on to keep running. . . .

Another reason for the software maintenance problem is the mobility of software
people. 1t is likely that the software team (or person) that did the original work is no
longer around. Worse, subsequent generations of software people have modified the
system and moved on. Today, there may be no one left who has any direct knowl-
edge of the legacy system.

As we noted in Chapter 27, the ubiquitous nature of change underlies all soft-
ware work. Change is inevitable when computer-based systems are built; there-
fore, we must develop mechanisms for evaluating, controlling, and making
modifications.

-+ “Progrom maintoinebility and program understandability are parallel concepts: the more difficult a program is to
. nderstand, the more difficult it is fo maintain.”

Gerald Berns

Upon reading the preceding paragraphs, a reader may protest: “But [ don't spend
60 percent of my time fixing mistakes in the programs I develop.” Software mainte-
nance is, of course, far more than “fixing mistakes.” We may define maintenance by
describing four activities [SWA76] that are undertaken after a program is released for
use. Software maintenance can be defined by identifying four different activities: cor-
rective maintenance, adaptive maintenance, perfective maintenance or enhance-
ment, and preventive maintenance or reengineering. Only about 20 percent of all
maintenance work is spent “fixing mistakes.” The remaining 80 percent is spent
adapting existing systems to changes in their external environment, making en-
hancements requested by users, and reengineering an application for future use.
When maintenance is considered to encompass all of these activities, it is relatively
easy to see why it absorbs so much effort.

31.2.2 A Software Reengineering Process Model

Reengineering takes time, costs significant amounts of money, and absorbs re-
sources that might be otherwise occupied on immediate concerns. For all of these
reasons, reengineering is not accomplished in a few months or even a few years.
Reengineering of information systems is an activity that will absorb information



CHAPTER 31 REENGINEERING

technology resources for many years. That’s why every orga

matic strategy for software reengineering. _ q
A workable strategy is encompassed in a reengineering procggsghodel. We'll di ;»! /

cuss the model later in this section, but first, some basic principl® &VS ""’3\0 >

d" "\,

neering of information systems if we consider an analogous activity: the rebuilding
of a house. Consider the following situation.

You have purchased a house in another state. You've never actually seen the
property, but you acquired it at an amazingly low price, with the warning that it might
have to be completely rebuilt. How would you proceed?

e Before you can start rebuilding, it would seem reasonable to inspect the
house. To determine whether it is in need of rebuilding, you (or a professional
inspector) would create a list of criteria so that your inspection would be
systematic.

o Before you tear down and rebuild the entire house, you would be sure that
the structure is weak. If the house is structurally sound, it may be possible to
“remodel” without rebuilding (at much lower cost and in much less time).

e Before you start rebuilding, you would be sure to understand how the
original was built. Take a peek behind the walls. Understand the wiring, the
plumbing, and the structural internals. Even if you trash them all, the insight
you’d gain would serve you well when you start construction.

e If you begin to rebuild, you would use only the most modern, long-lasting
materials. This may cost a bit more now, but it would help you to avoid
expensive and time-consuming maintenance later.

o If you decide to rebuild, you would be disciplined about it. Use practices that
would result in high quality—today and in the future.

Although these principles focus on the rebuilding of a house, they apply equally
well to the reengineering of computer-based systems and applications.

To implement these principles, we apply a software reengineering process model
that defines six activities, shown in Figure 31.2. In some cases, these activities occur
in a linear sequence, but this is not always the case. For example, it may be that re-
verse engineering (understanding the internal workings of a program) may have to
occur before document restructuring can commence.

The reengineering paradigm shown in the figure is a cyclical model. This means
that each of the activities presented as a part of the paradigm may be revisited. For
any particular cycle, the process can terminate after any one of these activities.

Inventory analysis. Every software organization should have an inventory of all
applications. The inventory can be nothing more than a spreadsheet model con-
taining information that provides a detailed description (e.g., size, age, business



876

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

A software
reengineering
process model

apwc:’

I time and resources
are in short supphy, you
might consider applying
the Parefo principle fo
the software that is fo
be engineered. Apply
the reengineering
process fo the 20
percent of the software
that accounts for 80
percent of the
problems.

Gpwc!‘

(reate only as much
documentation as you
need to understand the
software, not one page
more.

Forward
engineering

Inventory
analysis

Data
restructuring

Document
restructuring

Code

. Reverse
restructuring

engineering

criticality) of every active application. By sorting this information according to
business criticality, longevity, current maintainability, and other locally important
criteria, candidates for reengineering appear. Resources can then be allocated to
candidate applications for reengineering work.

It is important to note that the inventory should be revisited on a regular cycle.
The status of applications (e.g., business criticality) can change as a function of time,
and as a result, priorities for reengineering will shift.

Document restructuring. Weak documentation is the trademark of many legacy
systems. But what do we do about it? What are our options?

1. Creating documentation is far too time consuming. If the system works, we'll
live with what we have. In some cases, this is the correct approach. It is not
possible to recreate documentation for hundreds of computer programs. If a
program is relatively static, is coming to the end of its useful life, and is un-
likely to undergo significant change, let it be!

2. Documentation must be updated, but we have limited resources. We'll use a
“document when touched” approach. It may not be necessary to fully redocu-
ment an application. Rather, those portions of the system that are currently
undergoing change are fully documented. Over time, a collection of useful
and relevant documentation will evolve.

3. The system is business critical and must be fully redocumented. Even in this case,
an intelligent approach is to pare documentation to an essential minimum.



CHAPTER 31 REENGINEERING 877
Each of these options is viable. A software organization must choose the one that is
most appropriate for each case.

Reverse engineering. The term reverse engineering has its origins in the hardware
world. A company disassembles a competitive hardware product in an effort to un-
derstand its competitor’s design and manufacturing “secrets.” These secrets could be
easily understood if the competitor’s design and manufacturing specifications were
obtained. But these documents are proprietary and unavailable to the company do-
ing the reverse engineering. In essence, successful reverse engineering derives one
or more design and manufacturing specifications for a product by examining actual
specimens of the product.

Reverse engineering for software is quite similar. In most cases, however, the pro-
gram to be reverse engineered is not a competitor’s. Rather, it is the company’s own
work (often done many years earlier). The “secrets” to be understood are obscure be-
cause no specification was ever developed. Therefore, reverse engineering for soft-
ware is the process of analyzing a program in an effort to create a representation of
the program at a higher level of abstraction than source code. Reverse engineering
is a process of design recovery. Reverse engineering tools extract data, architectural,
and procedural design information from an existing program.

Code restructuring. The most common type of reengineering (actually, the use of
the term reengineering is questionable in this case) is code restructuring.> Some
legacy systems have a relatively solid program architecture, but individual modules
were coded in a way that makes them difficult to understand, test, and maintain. In
such cases, the code within the suspect modules can be restructured.

To accomplish this activity, the source code is analyzed using a restructuring tool.
Violations of structured programming constructs are noted, and code is then re-
structured (this can be done automatically). The resultant restructured code is re-
viewed and tested to ensure that no anomalies have been introduced. Internal code
documentation is updated.

Data restructuring. A program with weak data architecture will be difficult to
adapt and enhance. In fact, for many applications, data architecture has more to do
with the long-term viability of a program that the source code itself.

Unlike code restructuring, which occurs at a relatively low level of abstraction,
data structuring is a full-scale reengineering activity. In most cases, data restructur-
ing begins with a reverse engineering activity. Current data architecture is dissected,
and necessary data models are defined (Chapter 9). Data objects and attributes are
identified, and existing data structures are reviewed for quality.

3 Code restructuring has some of the elements of “refactoring,” a redesign concept introduced in
Chapter 4 and discussed elsewhere in this book.



878

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

When data structure is weak (e.g., flat files are currently implemented, when a re-
lational approach would greatly simplify processing), the data are reengineered.

Because data architecture has a strong influence on program architecture and the
algorithms that populate it, changes to the data will invariably result in either archi-
tectural or code-level changes.

Forward engineering. In an ideal world, applications would be rebuilt using an
automated “reengineering engine.” The old program would be fed into the engine,
analyzed, restructured, and then regenerated in a form that exhibited the best as-
pects of software quality. In the short term, it is unlikely that such an “engine” will
appear, but vendors have introduced tools that provide a limited subset of these ca-
pabilities that addresses specific application domains (e.g., applications that are im-
plemented using a specific database system). More important, these reengineering
tools are becoming increasingly more sophisticated.

Forward engineering, also called renovation or reclamation [CHI90], not only re-
covers design information from existing software, but uses this information to alter
or reconstitute the existing system in an effort to improve its overall quality. In most
cases, reengineered software reimplements the function of the existing system and
also adds new functions and/or improves overall performance.

Reverse engineering conjures an image of the “magic slot.” We feed a haphazardly de-
signed, undocumented source listing into the slot and out the other end comes a
complete design description (and full documentation) for the computer program. Un-
fortunately, the magic slot doesn't exist. Reverse engineering can extract design in-
formation from source code, but the abstraction level, the completeness of the
documentation, the degree to which tools and a human analyst work together, and
the directionality of the process are highly variable.

The abstraction level of a reverse engineering process and the tools used to effect
it refers to the sophistication of the design information that can be extracted from
source code. Ideally, the abstraction level should be as high as possible. That is, the
reverse engineering process should be capable of deriving procedural design repre-
sentations (a low-level abstraction), program and data structure information (a
somewhat higher level of abstraction), object models, data and/or control flow
models (a relatively high level of abstraction), and UML class, state and deployment
diagrams (a high level of abstraction). As the abstraction level increases, the soft-
ware engineer is provided with information that will allow easier understanding of
the program.

The completeness of a reverse engineering process refers to the level of detail that
is provided at an abstraction level. In most cases, the completeness decreases as the
abstraction level increases. For example, given a source code listing, it is relatively
easy to develop a complete procedural design representation. Simple design repre-



CHAPTER 31 REENGINEERING 879

The reverse
engineering
process

N
Ve,
POINT
Three reverse
engineering issues must
be oddressed:
abstraction level,
completeness, and
directionality.

Dirty source code

Processing
Clean source code

Extract

Interface
abstractions

Initial specification Database

Refine & :; ‘

simplify

Final specification

{

sentations may also be derived, but it is far more difficult to develop a complete set
of UML diagrams or models.

Completeness improves in direct proportion to the amount of analysis performed
by the person doing reverse engineering. Interactivity refers to the degree to which
the human is “integrated” with automated tools to create an effective reverse engi-
neering process. In most cases, as the abstraction level increases, interactivity must
increase or completeness will suffer.

If the directionality of the reverse engineering process is one-way, all information
extracted from the source code is provided to the software engineer who can then use
it during any maintenance activity. If directionality is two-way, the information is fed
to a reengineering tool that attempts to restructure or regenerate the old program.

The reverse engineering process is represented in Figure 31.3. Before reverse en-
gineering activities can commence, unstructured (“dirty”) source code is restructured
(Section 31.4.1) so that it contains only the structured programming constructs.* This
makes the source code easier to read and provides the basis for all the subsequent
reverse engineering activities.

The core of reverse engineering is an activity called extract abstractions. The engineer must
evaluate the old program and from the (often undocumented) source code, develop a mean-
ingful specification of the processing that is performed, the user interface that is applied, and the
program data structures or database that is used.

4 Code can be restructured using a restructuring engine—a tool that restructures source code.



Seemingly insignificant
compromises in data
structures can lead to
potentially catastrophic
problems in future
years. Consider the
Y2K problem as an
exomple.

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

31.3.1 Reverse Engineering to Understand Data

Reverse engineering of data occurs at different levels of abstraction and is often the
first reengineering task. At the program level, internal program data structures must
often be reverse engineered as part of an overall reengineering effort. At the system
level, global data structures (e.g., files, databases) are often reengineered to ac-
commodate new database management paradigms (e.g., the move from flat file to
relational or object-oriented database systems). Reverse engineering of the current
global data structures sets the stage for the introduction of a new system-wide
database.

Internal data structures. Reverse engineering techniques for internal program
data focus on the definition of classes of objects. This is accomplished by examining
the program code with the intent of grouping related program variables. In many
cases, the data organization within the code identifies abstract data types. For ex-
ample, record structures, files, lists, and other data structures often provide an initial
indicator of classes.

Database structure. Regardless of its logical organization and physical structure,
a database allows the definition of data objects and supports some method for es-
tablishing relationships among the objects. Therefore, reengineering one database
schema into another requires an understanding of existing objects and their rela-
tionships.

The following steps [PRE94] may be used to define the existing data model as a
precursor to reengineering a new database model: (1) build an initial object model,
(2) determine candidate keys, (3) refine the tentative classes, (4) define generaliza-
tions, and (5) discover associations (use techniques that are analogous to the CRC
approach). Once information defined in the preceding steps is known, a series of
transformations [PRE94] can be applied to map the old database structure into a new
database structure.

31.3.2 Reverse Engineering to Understand Processing

Reverse engineering to understand processing begins with an attempt to understand
and then extract procedural abstractions represented by the source code. To under-
stand procedural abstractions, the code is analyzed at varying levels of abstraction:
system, program, component, pattern, and statement.

The overall functionality of the entire application system must be understood be-
fore more detailed reverse engineering work occurs. This establishes a context for
further analysis and provides insight into interoperability issues among applications
within the system. Each of the programs that make up the application system repre-
sents a functional abstraction at a high level of detail. A block diagram, representing
the interaction between these functional abstractions, is created. Each component
performs some subfunction and represents a defined procedural abstraction. A
processing narrative for each component is developed. In some situations, system,



